# Dechema Praxis Forum: <br> Enzymes for industrial applications 8-Nov-2016 

## EnginZyme

Making biocatalysis your first choice

## Outline

- Common methods for enzyme reuse
- EziG enzyme immobilisation technology
- Examples of EziG applications


## Typical methods for enzyme reuse in biocatalysis

Bind to carrier


Encapsulation
Cross linking


## Why are not more processes performed with immobilised enzymes?

"The usual loss of activity commonly observed in the immobilisation process could be one reason for this observation.

On the other hand, another explanation could be the lack of a generally applicable, and simple to use, method for immobilisation."

- Prof. John Woodley, DTU

New strategy for enzyme reuse

## EziG ${ }^{\text {™ }}$ Enzyme Immobilisation



Controlled pore glass (CPG)

- Inert
- Robust
- Non-swelling
- Interconnecting pore structure, excellent fluid properties

- Favourable
- Customizable

Organic polymer coating
microenvironment


## His-tag binding

- Enrichment/purification
- Non-destructive binding
- Co-immobilization


## EziG Products

Varying degree of surface hydrophobicity to suit your enzyme


## EziG Opal

hydrophilic surface
Pure silica surface, no polymer coating

## EziG Coral

EziG Amber
semi-hydrophilic surface
Co-polymer (polystyrene derivative)

## Immobilize your enzyme directly in the reactor



Binding of transaminase from cell free extract (E. coli), 100 mL in SpinChem reactor

## Continuous Kinetic Resolution

## Chromobacterium violaceum $\omega$-transaminase



## Multi-phase cascade reaction

## Non-immobilized:

<5\% conversion

## EziG-immobilized:

56\% conversion

Enz.1: Baeyer-Villiger monooxygenase, without $\mathrm{FMNH}_{2}$-regeneration activity
Enz.2: flavin reductase
Enz.3: alanine dehydrogenase


## Immobilized Candida antarctica lipase B (CalB) Work in Progress

|  | Tributyrin hydrolysis <br> (TBU/g) | Stability (\%) <br> Remaining activity after 7 days <br> in toluene reaction mixture |
| :--- | :---: | :---: |
| EnginLipe ${ }^{\text {TM }}$ <br> (EziG-CalB) | 19000 | 32 |
| Novozym 435 <br> (CalB on acrylic beads) | 2500 | 22 |

## CaIB expressed in E. coli - Work in progress

- $300 \mathrm{mg} / \mathrm{L}$ active enzyme in shake flask (bioreactor not yet tested)
- Control of secreted vs intracellular expression
- Loaded on EziG from CFE
- EziG-bound CalB not leaching in aqueous conditions (24 h)
- Stable in organic solvent (Toluene, MTBE, MeCN)


## How can you save money by immobilizing your enzyme on an expensive material?

- Don’t waste enzyme
- Enrichment - bind from crude extract or culture medium
- Less carrier material needed
- Result: low cost per unit of activity


## - Biocatalytic processes - Reusable enzymes -



Partnering to Advance Human Health


## EnginZyme

Immobilised Enzyme Supply
PoC studies and pilot supply
Ready-to-use immobilised selectAZymes ${ }^{\text {TM }}$

## Lab to Production Scale Bioprocessing



## Summary

- EziG: a general immobilization matrix designed for biocatalysis
- Batch
- Flow
- Cascades
- CalB expressed in E. coli
- Ready-to-use immobilized enzymes and process development in collaboration with Almac


## EnginZyme

Making biocatalysis your first choice

## Leaching

| EziG type | Leached enzyme after <br> $\mathbf{2 4} \mathrm{h}$ at pH $7.0(\%)$ |
| :--- | :--- |
| EziG Opal | 3.4 |
| EziG Coral | $\mathrm{n} / \mathrm{d}$ |
| EziG Amber | $\mathrm{n} / \mathrm{d}$ |


| EziG type | Leached metal ions after <br> $\mathbf{7 2} \mathbf{h}$ at $\mathbf{p H ~} 7.0(\%)$ |
| :--- | :--- |
| EziG Opal | 1.5 |
| EziG Coral | 0.36 |
| EziG Amber | 0.61 |

