Dechema Praxis Forum: *Enzymes for industrial applications* 8-Nov-2016

Making biocatalysis your first choice

Outline

Common methods for enzyme reuse

EziG enzyme immobilisation technology

Examples of EziG applications

Typical methods for enzyme reuse in biocatalysis

Bind to carrier

Cross linking

Why are not more processes performed with immobilised enzymes?

"The usual loss of activity commonly observed in the immobilisation process could be one reason for this observation.

On the other hand, another explanation could be the lack of a generally applicable, and simple to use, method for immobilisation."

- Prof. John Woodley, DTU

New strategy for enzyme reuse

EziG[™] Enzyme Immobilisation

Controlled pore glass (CPG)

- Inert
- Robust
- Non-swelling
- Interconnecting pore structure, excellent fluid properties

Organic polymer coating

- Favourable microenvironment
- Customizable

- Enrichment/purification
- Non-destructive binding
- Co-immobilization

EziG Products

Varying degree of surface hydrophobicity to suit your enzyme

EziG Opal hydrophilic surface

Pure silica surface, no polymer coating

EziG Coral hydrophobic surface

Poly(vinylbenzylchloride) coating

EziG Amber semi-hydrophilic surface

Co-polymer (polystyrene derivative)

Immobilize your enzyme directly in the reactor

Binding of transaminase from cell free extract (E. coli), 100 mL in SpinChem reactor

Continuous Kinetic Resolution

Chromobacterium violaceum ω-transaminase

Multi-phase cascade reaction

Non-immobilized:

<5% conversion

EziG-immobilized:

56% conversion

Enz.1: Baeyer-Villiger monooxygenase, without FMNH₂-regeneration activity

Enz.2: flavin reductase

Enz.3: alanine dehydrogenase

Immobilized *Candida antarctica* lipase B (CalB) *Work in Progress*

	Tributyrin hydrolysis (TBU/g)	Stability (%) Remaining activity after 7 days in toluene reaction mixture
EnginLipe™ (EziG-CalB)	19 000	32
Novozym 435 (CalB on acrylic beads)	2 500	22

CalB expressed in *E. coli* – Work in progress

- 300 mg/L active enzyme in shake flask (bioreactor not yet tested)
- Control of secreted vs intracellular expression

- Loaded on EziG from CFE
- EziG-bound CalB not leaching in aqueous conditions (24 h)
- Stable in organic solvent (Toluene, MTBE, MeCN)

In collaboration with

How can you save money by immobilizing your enzyme on an expensive material?

- Don't waste enzyme
- Enrichment bind from crude extract or culture medium
- Less carrier material needed

Result: low cost per unit of activity

Biocatalytic processes – Reusable enzymes –

Intermediate Supply

Cost effective processes using immobilised enzymes

Bulk enzyme immobilisation

Immobilised Enzyme Supply

PoC studies and pilot supply

Ready-to-use immobilised selectAZymesTM

Lab to Production Scale Bioprocessing

Summary

- EziG: a general immobilization matrix designed for biocatalysis
 - Batch
 - Flow
 - Cascades
- CalB expressed in E. coli
- Ready-to-use immobilized enzymes and process development in collaboration with Almac

Making biocatalysis your first choice

Leaching

EziG type	Leached enzyme after 24 h at pH 7.0 (%)
EziG Opal	3.4
EziG Coral	n/d
EziG Amber	n/d

	Leached metal ions after 72 h at pH 7.0 (%)
EziG Opal	1.5
EziG Coral	0.36
EziG Amber	0.61